# Anaesthetic Challenges in Paediatric Neurosurgery

Assoc. Prof Dr Ritu Pradhan
Chief Consultant Anaesthesiologist
Head, Department of Anesthesiology and Intensive care
NAMS, Bir Hospital

# **BIR HOSPITAL**





- Conflict of Interest
- None

- Disclosures
- None

# • "Children are not the small adults"



- Brain: Important Vital Organ
- Cerebral blood flow varies with the different pediatric ages
- CMRO2 is more in children than adult
- Head poses larger percentages of body surface area resulting the increased blood volume: prone for the blood loss and hemodynamic fluctuation





Kevie

### Special Anaesthetic Considerations for Brain Tumour Surgery in Children

Sandra Jeker <sup>1,\*</sup>, Maria Julia Beck <sup>1</sup> and Thomas O. Erb <sup>1,2</sup>

**Table 1.** Cerebral blood flow for different age groups [6,7].

| Age                 | Cerebral Blood Flow (mL/100g/min) |
|---------------------|-----------------------------------|
| Premature neonate   | 12–20                             |
| Full term neonate   | 23–40                             |
| 6 months to 3 years | 90                                |
| 3–12 years          | 100                               |
| Adult               | 50                                |

Department of Pediatric Anesthesia, University Children's Hospital Basel (UKBB), 4056 Basel, Switzerland.

Department of Pediatric Anesthesia, University of Basel, 4001 Basel, Switzerland







CHILDREN HAVE DEVELOPING BRAIN

NEUROLOGICAL AND PHYSIOLOGICAL STATUS ARE IN THE PROCESS OF MATURITY

OPEN FRONTANALLE GIVE SPACE FOR PATHOLOGLY EXPANSION RESULTING IN THE LATE PRESENTATION

# Objectives

- To high light the reasons for the anaesthetic challenges in Paediatric neurosurgery
- To project the paediatric neuroanaesthesia in Nepal's Perspective

# Challenges in Anaesthesia

Different perspectives

# 1. Surgical

Advanced Subspeciality

Position

Morbidity and Mortality

**Neurocritical Care** 

# Surgical and anesthetic perspective

- Sharing of the Airway
- Small Body covered by drapes along with the sophisticated equipments like Microscope, navigations, etc

# Surgical perspective: Advanced subspeciliteis

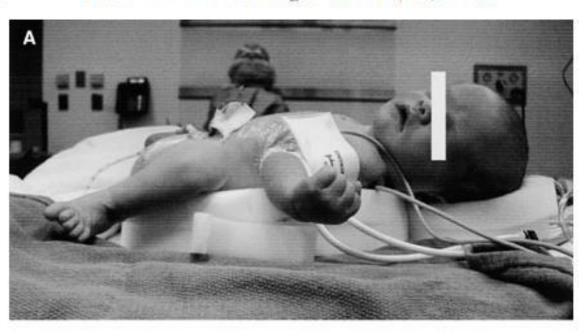
- Tumor
- Hydrocephalous
- Neurointerventional
- Vascular Malformations
- Craniosynthesis
- Functional surgeries
- Imagings (CT, MRI)

## **Postions**

- Positions related complications, pressure points, protection of eyes and other parts
- Unusual positions than supine
- > Prone
- ➤ Lateral
- ➤ Park bench
- ➤ Sitting (Venous Air embolism)

## Supine




Anesthesiology Clin N Am 20 (2002) 389-404 ANESTHESIOLOGY CLINICS OF NORTH AMERICA

Pediatric neuroanesthesia

Sulpicio G. Soriano, MD\*, Elizabeth A. Eldredge, MD, Mark A. Rockoff, MD

Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA

8 S.G. Soriano et al. / Anesthesiology Clin N Am 20 (2002) 389–404



# Prone position



Anesthesiology Clin N Am 20 (2002) 389-404 ANESTHESIOLOGY CLINICS OF NORTH AMERICA

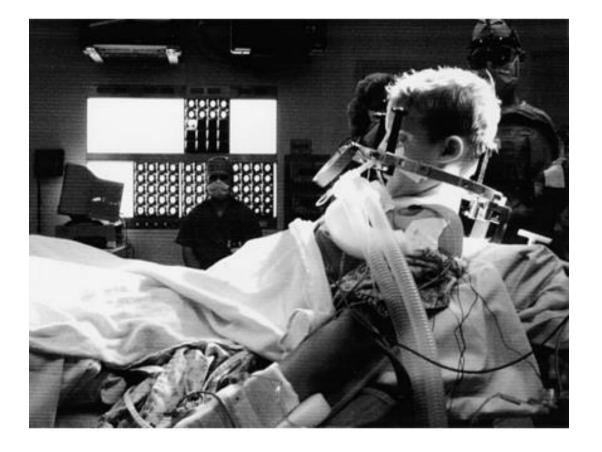
Pediatric neuroanesthesia

Sulpicio G. Soriano, MD\*, Elizabeth A. Eldredge, MD, Mark A. Rockoff, MD

Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA



## Sitting position




Anesthesiology Clin N Am 20 (2002) 389-404 ANESTHESIOLOGY CLINICS OF NORTH AMERICA

#### Pediatric neuroanesthesia

Sulpicio G. Soriano, MD\*, Elizabeth A. Eldredge, MD, Mark A. Rockoff, MD

Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA



# Anaesthesia for neurosurgical procedures in paediatric patients

#### Address for correspondence:

Dr. Girija Prasad Rath,
Department of
Neuroanaesthesiology,
All India Institute of Medical
Sciences (AIIMS),
New Delhi, India.
E-mail: girijarath@yahoo.co.in

#### Access this article online

Website: www.ijaweb.org

DOI: 10.4103/0019-5049.103979

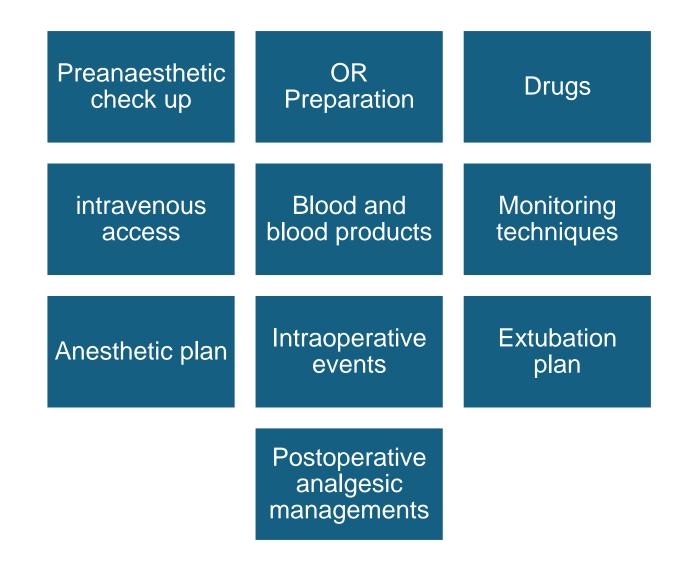
Quick response code



#### Girija Prasad Rath, Hari H Dash1

Department of Neuroanaesthesiology, All India Institute of Medical Sciences (AlIMS), New Delhi, <sup>1</sup>Director of Anaesthesia, Fortis Memorial Research Institute, Gurgaon, India

#### **ABSTRACT**


Recent advances in neurosurgery, neuromonitoring and neurointensive care have dramatically improved the outcome in patients affected by surgical lesions of central nervous system (CNS). Although most of these techniques were applied first in the adult population, paediatric patients present a set of inherent challenges because of their developing and maturing neurological and physiological status, apart from the CNS disease process. To provide optimal neuroanaesthesia care, the anaesthesiologist must have the knowledge of basic neurophysiology of developing brain and effects of various drugs on cerebral haemodynamics apart from the specialised training on paediatric neuroanaesthesia. This article highlights on the perioperative management of paediatric neurosurgical patients.

**Key words:** Craniosynostosis, hydrocephalus, meningomyelocele, neurointensive care, neuromonitoring, positioning



# Challenges in Anaesthesia

Anesthetic perspective



# Pre-anaesthetic check up

Different age groups

Communication

Anxiety

Associated conditions

consent

Table 1 Perioperative concerns for infants and children with neurological disease

| Condition                                   | Anesthetic implications                          |
|---------------------------------------------|--------------------------------------------------|
| Congenital heart disease                    | Hypoxia and cardiovascular collapse              |
| Prematurity                                 | Postoperative apnea                              |
| Upper respiratory tract infection           | Laryngospasm and postoperative hypoxia/pneumonia |
| Craniofacial abnormality                    | Difficulty with airway management                |
| Denervation injuries                        | Hyperkalemia after succinycholine                |
| Walland Color Color                         | Resistance to nondepolarizing muscle relaxants   |
| Chronic anticonvulsant therapy for epilepsy | Hepatic and hematological abnormalities          |
| 100                                         | Increased metabolism of anesthetic agents        |
| Arteriovenous malformation                  | Potential congestive heart failure               |
| Neuromuscular disease                       | Malignant hyperthermia                           |
|                                             | Respiratory failure                              |
|                                             | Sudden cardiac death                             |
| Chiari malformation                         | Apnea                                            |
|                                             | Aspiration pneumonitis                           |
| Hypothalamic/pituitary lesions              | Diabetes insipidus                               |
|                                             | Hypothyroidism                                   |
|                                             | Adrenal insufficiency                            |

S.G. Soriano et al. / Anesthesiology Clin N Am 20 (2002) 389–404

## Intravenous access

- Difficult
- Central venous cannulation
- Subclavian
- Internal Jugular??
- Femoral
- General Anesthesia



### Intravenous fluid

- Judicious fluid management
- Calculated dose
- > Infusion pumps
- Volume issues



# Drugs

- Fentanyl
- Propofol
- Sevoflurane induction
- Rocuronium/ Succinylcholine
- Isoflurane/ Sevoflurane
- Paracetamol (via different routes)
- Neostigmine and Atropine
- Calculated dose is required

# Monitoring Techniques

- Standard ASA I and II monitors
- Invasive monitors

Rely on oneself, not on monitors only

# Monitoring techniques





# Blood and blood products

- Significant blood volume loss Compared to adults
- Drop in blood pressure is the delayed sign
- Lack of viscoelastic coagulation tests

- Massive blood transfusion protocols may be activated
- Volume issues
- Infusion devices required

# Intraoperative events in neurosurgery

- Airway related: tube displacement, secretions, Kinking
- Breathing: ETCO2 measurement, bulky circuit, dead space due to catheter mount and HME filter
- Circulation: Hemodynamic fluctuation due to surgical bleedings, operating site manipulation, Air embolism, cerebral edema
- Temperature: specific challenges to maintain body temperature due to prolong surgery, position, Normal Saline wash in the brain

## **Extubation Plan**

- Awake extubation
- Elective mechanical ventilation:
- Non kinking tube must be replaced with the normal PVC tube
- Depends on the hemodynamic status, surgical site, duration of surgery

# Post operative care

- Neurosurgical ICU
- Judicious use of opioids and fluid
- Glucose monitoring
- Avoid Secondary brain injury by avoiding hypoxia, hypercarbia, acidosis, hypo/hyperglycemia,hyperthermia
- Electrolytes: hyponatremia (most common)

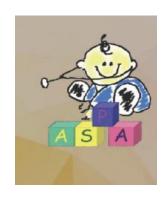
# Challenges in Nepal

Neuroanaesthesia: a developing subspeciality with scanty paediatric neuroanaesthesiologists

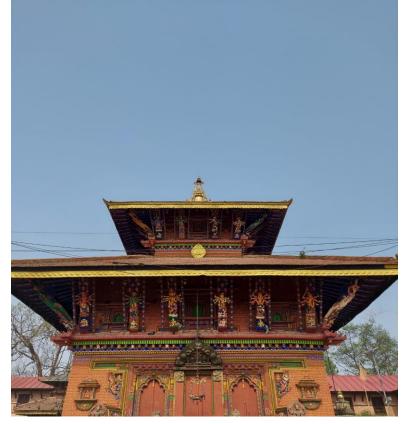
It is the responsibilities of general anaesthesiologists

Referral centres have high demand in case volumes

# Summary


- Delivering anaesthesia for the paediatric neurosurgery requires judicious planning
- Decision should be made on individual case basis
- Communication with surgeons regarding their surgical plan and position is a crucial part
- Multidisciplinary approach as per the requirement is important in special cases

# •THANK YOU




ASPA 2025 Nepal: Please visit Nepal









